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Because of the nature of the one-electron states in a metal in a magnetic field, the possibility
exists that the charge density of the ground state does not have the periodicity of the lattice.
We present an elementary theory which suggests the possibility of a laminar arrangement of
electron density with planes parallel to the magnetic field. We show that such a state is con-
sistent with group theory. If observable at all, this state should experimentally be seen only
at extremely low temperatures and strong magnetic fields.

I. INTRODUCTION

The interaction between electrons in a solid is too
strong and of too long a range to be neglected, or to
be treated by means of perturbation theory. Never-
theless the independent-particle model seems to
yield a good picture for describing low-lying excita-
tions of a solid. Much of our understanding of the
effect of electron correlation is based on the treat-
ment of an electron gas by Pines and others. ! This
treatment has led to a description of the gas in
terms of weakly interacting quasiparticles. It is
generally assumed that the same results hold true
in the presence of a periodic lattice. Since the
charge density associated with the one-particle
Bloch states has the periodicity of the lattice, such
a description is self-consistent. This periodicity
is destroyed by the presence of a magnetic field.

It is known? that the states are localizable in at least
one direction normal to the field. Therefore, it may
be expected that it is not sufficient to treat the be-
havior of electrons in crystals under an applied mag-
netic field merely by modifying the one-electron
Hamiltonian to incorporate the magnetic field. The
lattice potential itself must be altered to some ex-
tent in order to incorporate the effects associated
with the modified electron distribution in solids.

The purpose of this investigation is to examine the
question of the modified electronic charge distribu-
tion in a strong magnetic field in order to see wheth-
er any observable phenomena may be associated
with it. Instead of attempting a complete theory of
the problem, including correlation, we will approach
the problem in the spirit of the independent-particle
model, making those modifications which seem rea-
sonable from our current understanding of many-
body theory.

The nature of the eigenstates of a charged particle
in a periodic lattice in a uniform magnetic field is
by now fairly well understood. 8 The first treatment
of this problem is due to Landau, > who treated the
lattice potential as constant. Subsequent work by
Peierls and others*~'2 has shed much light on the ef-

2

fect of the lattice. Recently much work on the de-
generate electron gas in a strong magnetic field has
been done by Quinn, Lee, Greene, Rodriguez, and
others.® They solved simultaneously the equations
of motion for the electrons in a self-consistent elec-
tromagnetic field and the Maxwell equations. One
of their important results is the possibility for the
existence of thermodynamic equilibrium states with
a broken symmetry of interacting electrons in a
strong magnetic field. Such a system can spontan-
eously adopt a state that is spatially nonuniform in
the plane perpendicular to the applied uniform mag-
netic field. We are considering the possibility of

a somewhat different structure here. A group-the-
oretical approach, which is applicable to this prob-
lem, has been developed by one of us.'* This pro-
vides a convenient formulation on which much of our
analysis is based. In Sec. II, we discuss the irre-
ducible representations of the many-electron magne-
tic translation group. These representations are
then obtained in Sec, IIT in terms of the product rep-
resentations. It is shown there, for self-consis-
tency, that the lattice potential must be modified

to incorporate the two-dimensional probability den-
sity of electrons. The discrepancy between the
modified potential and the periodic potential is
treated as a perturbation in Sec. IV. In Sec. V, the
perturbation calculation is carried out in the free-
electron limit.

II. GENERALIZED MAGNETIC TRANSLATION OPERATORS

We state briefly the group-theoretical results, 314
Assume a magnetic field B along the 7, direction.
The magnetic flux through a two-dimensional unit
cell (7y, 7,) is assumed to be a rational number I/N.
Our unit is the quantum of flux #c/e. For conve-
nience, the crystal dimensions are chosen as N;NT,,
NyN7, Ng73, and periodic boundary conditions are
assumed. The magnetic translation group (a ray
group) G consists of the operators defined as

T(F) = exp[i/n) 7 (7 — KF XB)], (1)

where
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B=eB/nic=(2n/Q)(1/N)F,
Q=(—7:1><?2)'-7.'3, F=§+6A>/C,

XK is the vector potential, —e is the electronic
charge, and 7 is an arbitrary lattice vector. The
operators do not affect the spin states, but commute
with the single-electron Hamiltonian H= 112/ 2m + V(T).
From the gauge invariant relation

T(7,)T(7,) = expli (7,%7,). B] TF)T(F,), (2)

there follows the useful special cases

T(7,) T(T,) = exp(i271/N) T(T5) T(Ty), (3)
=[T(N7,), T(7)]=0. (4)

Consequently, N7;, NT, and 7, serve as basis vec-
tors for a magnetic superlattice. The imaginary
crystal generated by the magnetic unit cell of vol-
ume (N7, X NT,). T3= N°Q has the symmetry of the con-
ventional translation group. Consequently the ir-
reducible representations (IR) are characterized by
wave vectors { in the magnetic zone of domain

(Ky/N, K,/N, K,). The representation matrices are

N by N, given as

(52)
(5b)

DY, (1) =6,,, exp[id- 7, + im (211/N)],

D,a,,',l (T2) = Oy n1 €xp[iG- T3]  (ModN).

The translation through 75, i.e., in the direction of
E, is not interesting and will not be considered here.
The N-fold degenerate wave functions are no longer
of the Bloch type. However, the partner function

for a given qth IR, B(q+nylK,/N; 7), where n,
=0,1,2,..., N-1, satisfy the equations

T(F,)B({ + nplK,/N; T)

= exp[ig. 71 +ins(20l/N) 1B + nalK,/N; ), (6a)
T(%5)B(§ + nylK,/N; F)
= exp[i§- T, )B@ + (na+ 1)ZK1/N,' ). (6b)

The states of a single energy band can be viewed as
decomposing into N magnetic sub-bands, clustered
in sets of I. As is shown in Appendix A, for any
magnetic field now available, it is a sufficient ap-
proximation to consider only the case /=1,

The Hamiltonian of 9% interacting electrons in the
presence of a periodic lattice potential V; and a
magnetic field B=VxA& is given by

M1/, eAE)\2 _ ..] & 1 ¢
“Z[zm(*’—c*“) T i
"

Clearly [3, T;(7)]#0, where T;(7) operates only on
the ith electron. However, ¥ is invariant under a
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magnetic translation 7' (7), operating on all the elec-
trons simultaneously, viz., [5,7(7)]=0, provided
that periodic boundary conditions are imposed. **
The operator 7(7) is defined as

%€

7(@)=1 T,). (8)

i=1
The set of such operators also forms a ray group
g because of the relations

(%) T(F,) = exp[io(F, xF,,) B] T (7,), (9a)
7(T1)q (T2) = exp[i2r9t/N] T (F,) T(71), (9b)
[T(T's ); T (-7:1)] = [T(;!B)) T (’Fz)] = O' (gc)

If vand N have any factor in common, it will hence-
forth be assumed that 91/N has been brought to low-
est terms (i. e., 9t no longer need refer to the num-
ber of particles in the system, and a corresponding
change is possible in the definition of N).'® Equation
(9a) differs from Eq. (2) because of the factor 9t
which appears in the phase. Thus the results ob-
tained for G also apply to g, with substitution of
9/N for I/N. Each IR is characterized by a vector
é in a newly defined magnetic zone as

D 5 n(71) =8, expliQ@ Fy+ im2r/N)],  (10a)
D8 (F)=8, .1 exp(iQ-7;) (Mod,N).  (10b)

myn

The periodicity of the wave functions and the de-
generacy are also changed accordingly.

The degeneracy N of the many-body state is sen-
sitive to the number of electrons in the system.
Correspondingly, so are the translational proper-
ties of the many-body wave functions. For example,
if the number of electrons is the same as the orig-
nally defined value of N, (N=N,), the phase factor
of Eq. (9a) disappears and the many-particle state
has the same translational behavior as a Bloch
function. Conversely, if the number is not a multi-
ple of Ny, the many-particle state does not have
Bloch character with respect to the originally de-
fined lattice, so that the charge density associated
with such a state need not have the periodicity of the
crystal. Thus, it is not rigorous to assume, in the
presence of a magnetic field, that the self-consis-
tent potential has the original periodicity of the lat-
tice. Although such deviations from periodicity can
be assumed small on experimental as well as theo-
retical grounds, it is our purpose to see whether any
experimentally observable effects may be associated
with such changes.

III. IRREDUCIBLE REPRESENTATIONS AND BASIS
FUNCTIONS

Basis functions for an IR of the group g can be
obtained as linear combinations of products of one~
electron basis functions of the group G. Define the
product functions as



oo
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B”““(f,):inl B(ai+U1K1/N§ -fi), (11)
where p;=0,1,2,..., N~1, Note that the notation
B*#U(F,) indicates a gr-electron wave function,
where the ith electron occupies a one-electron state
specified by y; and §;. The functions B*#'%(F,) are
Bloch type along the x and z axes, but are not nec-
essarily Bloch-like in the y direction. Let v,

=M;— g wherej=1,2,-.. 9., For a fixed choice
of y, and §;, consider the set of N product functions

€
B U(F)) = 5111 B(q;+[(a=-1)+ Vi]KI/N; t,), (12)

where @=1,2,..., N, and a+v; has modulus N, It
can be shown by using Eqs. (6a), (6b), (8), and (11)
that
9a
T (F,)BY U(F,) = exp (szI) (G, T+ (@+v,— 1)21r/N]>

x BUU(E,), (13a)
- m - -
7 (F2)BY 3 (F,) = exp Q Zl G Tz>
i=
X B’;;'ai(Fi) (Mod N). (13b)

The functions defined by Eq. (12) serve as a basis
for a reducible representation of g. The matrices
of this representation, denoted by (v;, q;) for the
elements 7 and 7,, are given by

9
Dy (7)) = exp (z 2[4y T+ (@+v,;-1)20/N] > By

" (14)

N
D;nu’i".an(;z)=exp<iza,-?z)o,,,,,,n (ModN). (15)
=t

The remaining matrices are easily obtained from
these.

If M is the largest common factor of grand N, and
if N=MN’, the normalized basis functions which we
seek turn out to be

m-1
BV ev(F,) =yt Eo exp[-2yr(a+jN’)/N]
j=

x B, &), (16)
where «=1,2,...,N’; y=1,2,...,M. The repre-
sentation label Q is obtained from v;, q;, and y by
the relation

N
§= Zl: {ﬁj+ (V; - 1)ﬁ1/N+ YKZ/WN]- (17)
j=

Let us examine the behavior of the functions
B*%7(F) as a function of y. We consider for illus-
trative purpose the case for N=6, ot =2. Figure 1
shows the magnetic zone corresponding to this case.
The vectors §;, g, label the representations of the
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one-electron states which are used in the product
wave function. The product function B%'%(¥,) illus-
trated in Fig. 2 corresponds to u;=pu,=0. This is
one of six partner functions of the reducible repre-
sentation (v;=v,=0, qj,J,). The remaining partners
come from the other products for which u,= u,.
These six functions are schematically shown in Fig.
2, column III. From these six functions we can
form three which transform according to a represen-
tation labeled by (31 (see Fig. 1), and another three
which transform according to Qg. One of these lin-
ear combinations is indicated in column IV of Fig. 2.

We now consider what happens in terms of the in-
dependent-electron picture. If, in such a picture,
one has a state of completely filled Landau levels,
the many-particle state is consistent with a periodic
lattice potential. This is similar to the closed-shell
configuration which leads to a spherical potential in
the atomic analog. As in the atomic case, all one
needs to consider are those electrons outside of
closed shell (i.e., filled Landau levels). The po-
tential which results from these electrons will be
referred to as the residual potential.

The rational field was introduced for convenience
only. Any physical property which depends on the
precise value of 9/N is not likely to be observable.
This point was discussed by one of us in connection
with the independent-particle model, where I/N is
the important parameter. 3

IV. RESIDUAL POTENTIAL

We assume as our unperturbed Hamiltonian H,
the usual independent particle one, which is charac-
terized by the self-consistent potential V(¥). We
thus assume

Ki
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FIG. 1. Two-dimensional reciprocal spaces for &k
(the first Broullin zone) for g (the magnetic zone indicated
by the dashed line) and foré (the heavy-lined region).
The magnetic field corresponds to N=6’, the number of
electrons, N =2,



3970 K. A. CHAO AND E. BROWN 2

y 1 il hui g
I hﬂD ______ mm,
e 6 )s' 6 3
aTabo . $“ 5! 5 2

4 4! 4 |
L =t SR EE s Lottt -

272 -

A

FIG. 2. Symbolic profile of the laminar states (for
N=6 and N=2) along the y axis. The shadow states are
under consideration. They correspond to p =Hpy=v{=Vy
=0.

%
Ho={z_i [A/2m)@; + eA(F;)/ )%+ V(F;)]. (18)

We further assume we can solve for the associated
one-electron states by first solving the band pro-
blem corresponding to A=o0. Secondly, we use the
effective Hamiltonian method to incorporate the ef-
fect of the magnetic field. This procedure has been
discussed in a number of places. "%

_J

[P0t (F ; s,) [ Hy [ 910300 (F;5 s))]
N

. vk -
=2 (-e)[B(qﬁK’;\,—l;r, s,->

i=1

v(T)

e

1 & . vk - . vK, e
+3 > 1 [/B(qﬁ INI 5Ty, si>B<q,+—-’N—l; Ty s,)

- V'Kl > > Vﬁ -
XB(Qt+ 1N 5T Si>B<QJ+‘JN_1"1’z’ Sj\)]

- -

o> ;K - - v, K -
XB <q,-+—"]—v—1; Ts, 39 B(qj+—-NL—1~; 7y, s)} Bsgus, -

The two-body terms come from the Coulomb and
exchange interactions between two sets of planar

1 X - V-K - -> 14 I_{. ->
-3 'Zj—l [B(Qi‘f_‘N_1§ Ty, Si)B(QJ*"JITl; T s,) -

We can determine, in principle, the one-electron
states associated with the last unfilled Landau level.
We now consider the complete Hamiltonian of the
system. If we now let 9l denote the number of elec-
trons in this level, we can use as a perturbing term
the expression

€N 2 N .
H=2." 5 -2 ev(T)), (19)
1,5=14%i5 4=l

where v(T;) is the periodic part of the potential con-
tributed by these electrons: The antisymmetrized
wave functions belonging to the (v;, §;, ¥)th IR are

q,g‘ui,div)(;". Si) - (3»”)-1/2 E( _ I)W@B(:{.a,,w(;b. Si)s
(20)
where @ is the conventional notation for a permuta-
tion operator and s; denotes the spin coordinate.
Since H, commutes with G, it is generally known
from group theory that

NI
TR AN CH AT LML I

There are many sets of (v;, q;, ¥) corresponding to
the same vector Q. Let these sets be labeled as
¢w n=1,2,...,t. We then have to diagonalize a ¢
by ¢ matrix, the eigenfunctions for which are of the
form

t
22C v,
i=1

For a particular choice of (v;, q;,¥), we only need to

calculate the matrix element (H1)1,1- From Appendix
A, we have

B(§;+V*K‘ ; T, 31)]

2

712

22
712
(22)
-
states. The one-body potential term can be viewed

as resulting from a positive background with lattice
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periodicity. Note that Eq. (22) is y independent.
This is because y was introduced as a phase factor
to distinguish the planar states which have similar
density probability.

We could equally well have chosen D(T) to be di-
agonal, instead of ©(7,), in which case the laminar
orbitals would be localized along the x axis. This
result yields an equivalent picture of the electron
system as far as group theory is concerned. There
could however be a directional effect in the plane
normal to the magnetic field even though the original
Hamiltonian has no preferred orientation. (This is
analogous to the alignment of spins in a ferromag-
netic domain in a cubic crystal.) The electron-elec-
tron interaction can thus be regarded as a symme-
try-breaking term, which could yield a laminar
structure in the electron density. This structure
would yield a self-consistent potential with the per-
iodicity of the planes. Such a structure is consis-
tent with group theory and could possibly occur at
low temperatures. We will try to obtain an esti-
mate of the “binding energy” of such a state in
Sec. V.

V. EMPTY-LATTICE CALCULATION

We first estimate the residual Coulomb energy
for the empty-lattice model. The unperturbed
Hamiltonian is

%€
Ho=>(1/2m) ®; + e A (F;)/c)?. (23)
i=1
In the Landau gauge, A=B(-y,0,0)’, the solutions
are

Uy p, (F)= (LL) Y 2expli(k,x +k.2) - 380y = 90)*]

X H[B%(y -yy)], (24)

E,, 5, =00 +3 )i+ %E/2m, (25)

where H,[8%(y - y,) ] is a normalized Hermite func-
tion centered at y,= —%,/B. The basis function for
the qth IR of group G are generated by using pro-
jection operators:

o= - N-t . e
B+ uKy/N; )= (N 23 exp[-i(tN+up)q - 7]
t=0

X T[N+ 1) T2 ]d5e, (F),  (26)
where { is restricted to a magnetic zone and ¢,=k,;
q.=k,. Those Hermite functions centered outside
the crystal are chopped off. Note that 7y, 75, 73
and therefore N are not uniquely defined. We as-
sume a set of lattice vectors and treat them as ad-
justable parameters. For a ground state consist-
ing of ;M electrons in a partially filled shell, the
product functions are
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)

N
i exp[-i(tN+a +y-1)q;- 7]

t=1

=es

- (Nz)-llz

.
-

XT[(EN +a + v, = DT ]9, ), (27)

B(gi' vind (F 2

=M’2§ (MY 2 exp[i2my(a +iN')/N]B i) (F),
. (28)

where =1, 2, ..., N andv=1, 2,...,M. Geo-
metrically the single-particle states B"({ + uK, /N; ¥)
consist of N, planar functions zb;'xqz(F) centered along
the y axis. Their equilibrium points are equally
spaced at yo=(-q,/B+ 1Ty +tNT;, where
t=1,2,...,N,. The width of each plane is
270=2[(2n+1)/B]Y2=2[(n+1/2) N7y, /7]*% . (29)
We are interested in the case of negligible intra-
band tunneling; i.e., we assume 2gy< NT,.

The dl-electron wave function is simply 91 mutual-
ly penetrating sets of parallel laminar orbitals.

In a region Ay =N, on the y axis, there are N such
planes. Each one belongs to a different electron.
The analytic form of the perturbation energy is de-
rived in Appendix B. In principle, the ground state
is determined by minimizing the energy treating
n;,q;, and v; as parameters. , However, it is
difficult to get an accurate estimate of the energy
from the analytic solution. We will therefore esti-
mate the order of magnitude by a semiclassical
approach.

The residual Coulomb energy of 9t electrons in
states belonging to the same # and %, will be first
estimated. This is the electrostatic energy of 3
electrons immersed in a uniform positive-charged
background of charge density 3le/V. The Coulomb
energy of these M sets of penetrating laminar states
will be a minimum if all the planar orbitals are
equally separated by A= N1, /1. Also, it is less
for smaller N7,. However, we have NT7,2 2g,;
hence, we approximate the ground state by setting
NT,=2g, and then determine 7,=27/NTof=1/q.B.

In the semiclassical approach we assume, for the
electronic density probability of the planar orbitals,
the classical value P(y)=(1/m)[g3- (y —yo)?]"*/2.
Then the electrostatic energy density £ E? is ob-
tained by solving ¥ - E =4mp(y), where p(y) is the
resultant charge density.

The density distribution, along the y axis, of o
electrons in the ground state is found by first peri-
odically extending P(y) = (1/7)[q%~(y —=v¢)?]"*/?
along the y axis with period 2g, Call the new func-
tion S (y —=vy). Then 9t such functions S(y — wA),
where m=1, 2,...,9, are superimposed. Including
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the contribution of the positive-charged background,
it is easy to find the electrostatic energy per elec-
tron of the system as

€= (e%q3/87%V)(1 - 2/3N).

Since It is large, the residual Coulomb energy per
electron for a given n» and &, can be rewritten as

€ = (e%g?/812V) = (%/872V)[(2n +1)/B], (31)

where V is the volume of the crystal.

In real system, all the Landau levels on the
Fermi surface with different » and %, are partially
filled. The residual Coulomb energy can be esti-
mated by the same process. Its upper limit can
be easily obtained by setting go=@Q, in Eq. (31),
where @, is the maximum spread of the Landau
levels involved. Then we have

€| max= (€2 Q3 /872V) = (e?/87%V) [(2N, + 1)/8],

(30)

(32)

where N, specifies the Laudau level for @,.

The volume V can not be arbitrarily small due
to the restriction of periodic boundary conditions.
For a thin film of thickness 500 f&, the area of the
film should be at least 10°Q2. Putting these values
into Eq. (32), we obtain

€| max™~ 3% 10°° Ry.

For metal with conduction electrons approximated
by free electrons, we have to take into account the
lattice constants. The result is
€ | max= (€2NT,Q0)/167%V. (33)

For a thin film of volume V= (5007;)(100NT,)
X (100NT,) and a strong magnetic field B~ 10° G, for
which N~10% the residual Coulomb energy per
electron is about 10°% Ry.

We can not find a semiclassical approximation for
the residual exchange energy, but it is presumed
to be of the same order of magnitude as the Coulomb
energy. Consequently, the correction energy is
negligibly small. Thus we would estimate that no
alignment into a laminar structure could be observed
in a free-electron metal at a temperature above
=~ 0.001 °K. Even at such a temperature we are not
in position to predict from this elementary approach
how such a state would manifest itself. We have not
investigated the possibility of the electrons arrang-
ing themselves into domains with different orienta-
tions of the planes for example. It is possible that
if such a state did exist and extended to the surface
of the metal, there might be diffraction effects as-
sociated with the periodic surface density, as ina
reflection grating. Since € involves only the partial-
ly filled Landau levels at the Fermi surface, the
de Haas—van Alphen-type oscillation of € versus
1/B may also exist.

K. A. CHAO AND E. BROWN

Ino

VI. CONCLUSION

The analytic expression for the residual interac-
tion energy is too complicated to be evaluated nu-
merically. Although the semiclassical calculation
is much less exact, its accuracy is sufficient to give
an estimate of the residual interaction for a reason-
able density of electrons. In the empty-lattice mod-
el it was found that the interaction is very small.
Such a calculation may be expected to yield an or-
der-of-magnitude estimate for most metals, at
least those described by a nearly free-electron pic-
ture at the Fermi surface.

According to Eq. (32) it appears that the residual
interaction energy is inversely proportional to B%/2,
It should be pointed out that this seemingly nonphys-
ical result is not to be taken literally. Equation (32)
is derived using the nonphysical assumption of pe-
riodic boundary conditions. These can be invoked
only if B exceeds some value (of the order of 10° G
for a solid of dimension about 1 ecm). Since we make
use of rational fields throughout, the theory per-
tains only to values of B substantially larger than
this. The falling off with B is not expected to be
valid for fields greater than 10®-10° G in which case
B changes the one-electron wave functions signifi-
cantly over atomic dimensions.

The residual interaction seems to be several or-
ders of magnitude too small to give rise to observ-
able effects even at helium temperatures. These
calculations thus support the usual view that the
behavior of solids in applied magnetic fields can be
understood in terms of the picture in which one
merely replaces the momentum operator p in the
Hamiltonian for the individual electron by the kin+
etic momentum D +eA /c. This assumption, which
has been used extensively, is thus expected to yield
quite reliable predictions.

It is to be noted that we have not carried out a
fully rigorous treatment of the correlation problem.
This problem is too difficult to be carried out in
any detail. We have merely assumed that true cor-
relation terms are not measurably altered by a
magnetic field.

In summary, we say that a state of lowered ener-
gy can exist in a strong magnetic field at sufficient-
ly low temperatures, which results in a superlattice
structure with a periodic laminar structure. We
have not considered in this elementary theory the
residual interactions which are responsible for
superconductivity. In the strong magnetic fields
which we are considering we do not expect the kind
of correlated behavior which are associated with
superconductivity.
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APPENDIX A: APPROXIMATING RATIONAL FIELD /=1

For a crystal of dimensions (NN, 7T, NN,T,, N3T3)
in a magnetic field B« 1/N, the symmetrized func-
tions are

-> p - Nz - >
B+ pK, /N; T) = (N,)™ /23" exp[-i(tN+ 1) - T5]
t=1

X T[N+ p) 7] 9 (), (A1)
where y3(F) are Landau functions with
=4k, /N N+ 5Ky /NN + 15K /Ny, (A2)

and u=1,2,... ,N; n;=1,2,...,N;withi=1,2, 3.
With a slight change of magnetic field from 1/N to
1/N'=1/(IN +m), where m< N, the new symmetrized
functions are

b™ (3 + 61K, /N'; ¥)

= (Ng)'l/z%exp[— i(pN"+6) B+ (a- 1)K, /N")- F,]
t=1

X T[(pN' +6) Tol 95 ca- 1y %, /a0 (F) (A1)
where
S=nK, /NN +n} K, /Ny N +ngKy /Ny,  (A2)

and @=1,2,...,; n}=1,2,...,N; withi=1,2; 5
=1,2,...,N’; NJN'=N,N, N;N' =N,N. The index

a describes explicitly which of the [ clustged bands
is referred. Note that the domain of g is not exact-
ly 12 times as large as the domain of §. The dis-
crepancy in each dimension is mK, /N(IN +m) [or
mK,/N(IN+m)]. This small difference does not
affect many of the physical quantities which depend
on the magnetic field. However, it does have sig-
nificant importance to the IR’s of the magnetic
translation group in the sense of completeness of
the basis functions. The inverse transform of Eq.
(A1') gives
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8 4 ca-nR, sy @)= (N5 /2 expli(pN’ +6)8 - 7]
S,

v

X T[- (pN' +6) F,] o™ (8 + 61K, /N'; )

= (N§)H2pm e (5 F) . (A3)

Sy

For m < N, we have the fairly good approximation
N’~|IN, Ny=~N'/l, N3~N,/l, and s, + (¢ =1)K,/N’
=g, for a proper choice of . We change the nota-
tion by extending the domain of s, I times larger;
then we can omit the index @ and set s,=¢,. For
a pair of Y3(¥) and y3(F) with §=8, the centers of
the two Hermite functions are slightly shifted by

|90(@) - yo3)| = Qq,m/2n750 .

It is negligibly small compared to the width of the
planar functions. Hence we can approximate ng(F)
by 95(F) for ¢=85. Substituting Eq. (A3) into Eq.
(A1), using the new notation without the appearance
of @, we have

-itNq e 1y

1
B+ uR, /N; F) =17t/ 2ritnun/ ¥ 5o

XT(NT,) b"E + K, /N - K, /IN; T) ,
(A4)

where £ is an integer such that g, — {K, /IN falls in
the range K, /2,N.

The derivation of Eq. (A4) depends on the approx-
imation N'=~[N. This is a very good approximation
for the highest achievable field, or even higher. If
the magnetic field is so strong that the approxima-
tion collapses, then both 7 and N are small. In this
case, it is not necessary to use the approximating
field 7=1. Equation (A4) indicates that the field
B I/N' can be replaced by the field Bx 1/(N’/1)
=1/N, with negligible effect on the physical quan-
tities which depend on the strength of the magnetic
field.

APPENDIX B: ANALYTICAL EXPRESSION FOR RESIDUAL INTERACTION ENERGY

The matrix of the residual interaction is the product of a constant and a unit matrix. Using Eq. (24) for

a=1, we obtain

WD (F, 5 )) = (0U)V2 (- 1) @B (7 s,)
@

The constant is given by

(\Iyg”i"iai") (Fi’ S,-)!Hl I \I,in,-u;‘air) (Fb s‘) )

y §=0 i=l

(B1)

M1 N =
=(MN1)T 2 exp(— i2'y17uMs> [%,‘ (- 1% eIl Bm <§i+(v,+sN') ENL; T, si>
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x| 9 ev(ty) 2( 1)@(911 B"’(Qi+("f+uN)IJ<V Fisi):l

G 2V i=1

& - . - E -
:Z (‘ e)(B<Q;+JJ\7—; r, se) lv(r)|B<qg+£‘]7L; r, SE

¢=1

., ]
o0 B 2 e (e a5 B ) (e ey 5 5 5)
s M

. K, » K .
B"t(q€+(vz+uN')#; rl,s>B"n<q,,+(u +uN’ )—ﬁ, 2 sn)]

X

e
27y
-

K .\ K, -
—E'[B f(q; (VﬁuN')F" ;T s¢>B”n<q,,+(1/,,+uN’)7vl Ty, s,,)
e'

K A K, -
B :(qt+(u€+uN y=L T ; T, Se>3""<Qn+(Vn+“N')-l\%§rn s,,)]ésPsn}. (B2)

e
212

Since e?/7,, commutes with the operator T(— u7,) T,(- u7,), the value of « has no effect on the matrix ele-
ments in Eq. (B2). Hence we set #=0 for all the matrix elements, and Eq. (B2) reduces to Eq. (22).
We will treat the residual Coulomb energy (H,,). and the residual exchange energy (H,,)., separately for

the empty-lattice model. For Coulomb energy, we assume a single spin for simplicity. Using Eq. (26),

we have

> tf exp{— i[N(t; = £,) q, + Nty - t,)q,] - Fo} {T1 [t N +v,) 7] ngi(ﬁ) To[ (N + 1), ]
» 1 ¢4=1

X lPa?,(rz)le /2745 | Tl[(t3N+ vy) 7o) zbaf(r1 To[ (8N +v,) To] U3 "(rz)} .

(Hm = (Na

Substituting in the Fourier transform of the two-body potential and integrating over x and z, we obtain

Ny
(Hyp), = (ZNS)'?: tzl (4€°T/ V)84 -tg), tgete) exp{—i[N(t;— 1)) Qs + Nty — 1) &y |+ To2 g [{1/[(t; - )2 K2 + %1}
' N ¥4

xexp ({ - [(t; - 1) Ky +iq]? - 2¢° +i2¢B7, [(t, - t,) N+ (v, — v))] - i2q(q,_ ~ q5,) 1/28)

x [ dy(exp{~ [By+ (g, - 3iq) + (ts ~ ) 5K,/ B} HY [8Y/*(y + 300 ) Hy 16"y + [y, + (b5 = 1) Ka] 677

Xf dy (exp{— [By+(q,,x+%iq) (ts- tl /3}
X 1Y [8Y% (y +5a) | H, 16'%y + [0, — (t; ~ t) K11 87/%}) ]
The two integrals can be evaluated using generating function

S(g, )= et 2t =§:‘; H,(&)t"(n! )

n=0
Omitting the detailed algebraic work, the final result becomes

N 0
()= Cre/NeV) S5 % expl=[(ts- 6 K2+ q]/26}

&=l tyfatg=l gmew

X exp{- iN(t; - 1) (@, - an) s Ty +iqTy[(L— ) N+ (vp=vp] - iq(qcx - qﬂx) /8%
Xni mmo(-1) mmnelnn'[(ta - tl K1+q2]"!+"'l"”"’ -1
wt s mInt [(ng = m)! P [(oy— )1 P (2B)"e *PormnT (B3)



2 THEORY OF A POSSIBLE ORDERED DIAMAGNETIC STATE

39775

The exchange energy is obtained by the same procedure as

©

€N N2
(le)ex= (" 2me Z/NSV) Z Z

3,121 titgtgal ga=c

> exp{-[(o - q,,+4,)°+¢?1/28} exp{- iN(t; - ;) (§,-T,) - T}

X{[(ts = t)) K+ (v,— V) K, /N + (qn,, - q‘x)]z +g?F!

X!nelnn) (- 1)m+""e!nn! [(qe -q _p)z+qz]nn-m[(q -4, _p)a+q2]n¢-n

) (B4)

myn=0

where
p=(ts—t) K+ (vy,—v) K, /N

and (n,1n,) is the smaller value of #, and =,

mlnl(ny-m)! (n,—n)! (ny—n)! (n,—m)! (2p)1¢*mmm=n
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